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ABSTRACT

A variety of equity-linked insurance contracts such as variable annuities
(VA) and equity-indexed annuities (EIA) have gained their attractive-
ness in the past decade because of the bullish equity market and low
interest rates. Due to the complexity of their inherent nature, pricing and
risk management of these products are quantitatively challenging and
therefore have become sources of concern to many insurance companies.
From a financial engineer’s perspective, the options in VA and those
embedded in EIA can be modeled as puts and calls, respectively, and
enable the use of numerical option pricing techniques. Additionally, values
of VA and EIA move in opposite directions in response to changes in the
underlying equity value. Therefore, for insurers who offer both businesses,
there are natural offsets or diversification benefits in terms of economic
capital (EC) usage. In this chapter, we consider two specific products: the
guaranteed minimal account benefit (GMAB) and the point-to-point
(PTP) EIA contract, which belong to the VA and EIA classes
respectively. Taking into account mortality risk and suboptimal dynamic
lapse behavior, we build a framework that quantifies the value of each
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product and the natural hedging benefits based on risk-neutral option
pricing theory. With Monte Carlo simulation and finite difference
methods being implemented, an optimum product mixture of those two
contracts is achieved that deploys capital the most efficiently.

1. INTRODUCTION

The market for equity-linked insurance such as variable annuities (VA) and
equity-indexed annuities (EIA) has grown tremendously over recent years
and has become a significant segment of our capital markets. This has been
evidenced by the growing sales that have reached $113 billion for VA and
$13 billion for EIA in 2003.1 This is partly thanks to the bullish US equity
market along with relatively low interest rates over the past decade, which
have led policyholders to be more aware of investment opportunities
outside the traditional insurance sector so that they can enjoy the benefits
from financial markets in conjunction with investment guarantees and tax
advantages. Different from traditional insurance products, these equity-
linked insurance contracts provide policyholders mortality or maturity
protection as well as the beneficial return based on the equity market’s
performance. The pricing and risk management of these products are
quantitatively challenging and therefore have become sources of concern to
both the regulator and the many insurance companies. For instance, pricing
these annuity contracts is complicated with mortality risk and dynamic
lapse2 behavior involved; also, the limited capital of a life insurance
company constrains the volume of its VA and EIA business; thus, how to
deploy the economic capital (EC)3 more efficiently turns out to be an urgent
problem to frame.

It is important to stress that from an option pricing perspective, the
options in VA and those embedded in EIA can be modeled as puts and
calls, respectively, which will be shown in detail later. However, with
mortality and dynamic lapse risk involved, pricing these contracts becomes
numerically challenging and needs special techniques for its complicated
features such as path dependency.

The values of these embedded options move in opposite directions in
response to underlying equity price changes. Suppose both products share
the same underlying equity process, then these two types of options have
payoffs that can partially offset each other, thus natural diversification
benefits exist in a portfolio that contains both VA and EIA products, and
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therefore, the EC requirements for that annuity writers can be reduced.
From the insurance company’s (risk management) point of view, it will be
very useful to quantify these diversification benefits and derive an optimal
business mix based on the most efficient way to deploy the capital. The
framework of this chapter, which differs from previous literatures, is based
on this purpose.

Perhaps, the best way to illustrate this intuition is through a simple
numerical example. Table 1 provides the Value at Risk (VaR) and standard
deviation of a European put, a European call, and a 50/50 mixture of these
two options (i.e., a straddle) at time horizons of both 1 and 2 years. This
example assumes both options are at-the-money, have maturity of 4 years,
and are based on the same underlying equity price that follows a geometric
Brownian motion with drift m ¼ 8%, non-dividend-paying, volatility
s ¼ 0.2, risk-free rate r ¼ 2%, and initial price S0 ¼ 1.

It is shown in Table 1 that the straddle portfolio has a much lower VaR
and standard deviation than the average of these two options, which can
be explained by Fig. 1. The correlation between the prices of a put and
a call is negative: when one option is in-the-money (implies a higher price),
the other one is likely to be out-of-the-money (implies a lower price).
This natural diversification lowers down both the VaR and the standard
deviation of that straddle portfolio (red line in Fig. 1). And it will be shown
later that similar diversification effect also exists in portfolio that contains
both VA and EIA.

There have been some previous literature in this area. For research on
VA, Brennan and Schwartz (1976), Boyle and Schwartz (1977), and Brennan
and Schwartz (1979) first introduced the famous Black–Scholes–Merton
(Merton, 1973) framework into this field. They assumed complete markets
for both financial and mortality risk and derived risk-neutral price formulae.
More recent work on equity-linked life insurance was done by Bacinello and
Ortu (1993a, 1993b, 1996), Aase and Persson (1994), and Nielsen and

Table 1. Diversification of a Put and Call.

Tenor (Years) 99% Value at Risk Standard Deviation

Put Call 50/50 Mix Put Call 50/50 Mix

1 0.30 0.76 0.38 0.07 0.16 0.06

2 0.38 1.22 0.61 0.09 0.27 0.11

Note: The bold/italic numbers are used to show the effect of risk reduction (in terms of 99%

VaR and Std. Dev.) from diversification.
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Sandmann (1995). These authors allowed the risk-free interest rate to be
stochastic. Follmer and Sonderman (1986) assumed an incomplete mortality
market and introduced the concept of risk-minimizing strategies, which was
extended by Moller (1998). Hardy (2003) offered risk-neutral pricing and
dynamic hedging analyses on VA. Milevsky applied an optimal control
technique to analyze VA with mortality and lapse risk (Milevsky &
Salisbury, 2002) as a best stopping time problem and concluded that in
today’s market, the guaranteed minimum death benefit (GMDB) products
were overpriced (Milevsky & Posner, 2001), and in contrast, the guaranteed
minimum withdrawal benefit (GMWB) products were underpriced
(Milevsky & Salisbury, 2004).

In the field of EIA research, Tiong (2000) used Esscher transforms and
derived closed form pricing formulae for several types of EIA products:
point-to-point (PTP), cliquet, and lookback, which were also covered by
Hardy (2003). Lin and Tan (2003) extended the model to include stochastic
interest rates.

This chapter applied the Black–Scholes–Merton option pricing frame-
work along with a complete mortality and lapse market. Oppose to an
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Fig. 1. Diversification of a Put and a Call. (1-year time horizon).
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optimal control approach, lapse behavior is modeled as a function of time
and underlying equity performance that can be economically irrational and
suboptimal. Based on this framework, we developed analytic formulas and
finite difference schemes to price both VA and EIA, which enable the EC
calculation and optimization.

The rest of this chapter is organized as follows. We present the framework
in Section 2. Analytical formulas including risk-neutral pricing and EC
calculating are implemented on two specific products: guaranteed minimum
account benefit (GMAB) in Section 2.1, and the PTP EIA contract in
Section 2.2, which belong to the VA and EIA classes respectively. In
Section 2.3, we introduced a finite difference approach to price GMAB and
PTP. In Section 2.4, we analyzed the EC of a GMAB/PTP mixture portfolio
based on a Monte Carlo simulation and finite difference hybrid algorithm.
An optimal combination of these two products is achieved which employs
EC the most efficiently. We conclude in Section 2.5 with closing remarks
and summary.

2. FORMULATION

2.1. GMAB Contract, Valuation, and Economic Capital

2.1.1. Product Description
VA are tax-deferred, complex structured equity, and interest rate investment
vehicles. They provide money-back guarantees on a separate mutual fund
account, and these guarantees can be viewed as put options with an
increasing strike price. Different from usual financial products that are
paid up-front, premiums of these products are paid by installments, with a
proportional benefit charge that is deduced from the underlying mutual
fund account on a periodic basis.

The simplest VA product is the GMAB, which provides the beneficiary
a minimal guarantee in the event that the policyholder dies or contract
matures, whichever one comes first. In this chapter, we focus on a GMAB
account.

An example of a GMAB contract is as follows: at initiation, t ¼ 0, the
policyholder enters into a contract by paying the insurance company an
initial amount P. The insurance company immediately invests the amount P
into a mutual fund (such as an S&P 500 index fund) and there is no further
payment from the policyholder. The insurance company guarantees a rate
of return rg up to the end of contract, when the beneficiary will receive the
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greater of either the current mutual fund account value or the guaranteed
amount. In exchange, the insurance company charges a certain percent of
account amount as the contract fees. The guaranteed payment can be
triggered by mortality or maturity, but not by lapse behavior: If the
policyholder decides to lapse the VA contract before maturity, he/she can
get his/her mutual fund account value back after some penalty fees charged,
but the guarantee is not redeemable.

2.1.2. GMAB without Mortality and Lapse
Consider a GMAB contract with $1 initial account value and maturity time
N (in years). Ignoring any mortality and lapse risk, the embedded option in
GMAB turns to be a plain vanilla European put.

For the rest of this chapter, the underlying equity price is assumed to
satisfy a geometric Brownian motion, the interest rate is assumed to be
constant, and continuous compounding will be used for simplicity.
This framework is similar to Hardy (2003). Given time horizon n prior to
maturity, let Gn be the guaranteed amount,

Gn ¼ ergn 	 1; 0 � n � N

As we discussed before, Gn is going to be the strike price for its embedded
option. Let m be management fee rate that was charged to policyholder’s
account and fFng be the account value process that satisfies,

Fn ¼ e�mn Sn

S0
; 0 � n � N

At any time t ¼ n prior to N, suppose the underlying stock price is Sn.
The embedded put option value in GMAB can then be calculated as
follows:

Hn ¼ EQ
n ½e

�rðN�nÞHN �

where

HN ¼ GN � FNð Þ
þ
¼ ergN � e�mN SN

S0


 �þ

¼
e�mN

S0
eðmþrgÞNS0 � SN

� �þ
In the formula above, EQ

n ½d� is expectation under risk-neutral measure Q.
The HN term, which is the final cash flow of the GMAB contract that
happens at maturity N, is equivalent to the payoff of a vanilla European
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put option. If we take notation VputðS0;K ; r; d ;s; tÞ as the price of a
vanilla European put, then under the Black–Scholes–Merton framework
(Black & Scholes, 1973), the closed form of such an option value can be
written as follows:

Hn ¼
e�mN

S0
	 VputðSn; e

ðmþrgÞNS0; r; d; s;N � nÞ

¼ ergN�rðN�nÞFð�d2Þ �
e�mN

S0
Sne

�dðN�nÞFð�d1Þ

where

d1 ¼
logðSn=S0Þ � ðmþ rgÞN þ ðr� d þ s2

2
ÞðN � nÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p

For a GMAB contract, the net value of adding the guarantee to the VA
product at time n, noted by NVnðSnÞ, can be formulated as the difference
between two parts: the embedded option (guarantee) value from time n to
maturity N, and the present value of the benefit charge (noted as fn), as a
portion of the total management fees charged to the policyholder’s account.
NVnðSnÞ has the following form:

NVnðSnÞ ¼ Hn � f n

and

f n ¼

Z N

n

e�rðt�nÞEQ
n ½Ft�mdt ¼

1

S0
Sn

Z N

n

e�mtmdt ¼
1

S0
Sn½e

�mn � e�mN �

The corresponding EC of GMAB is defined as the percentile risk measure of
NVðSnÞ:

P½NVnðSnÞ �NV0ðS0Þ 
 ECGMAB�o1� b

where b is the confidence level. As NVnðSnÞ is monotonic,4 its analytical EC
(or equivalent, VaR) can be directly calculated (Fong & Lin, 1999) in the
following way:

Var½f ðSÞ� ¼ f ðVar½S�Þ if f ðSÞ is monotonic

Pricing and Risk Management of VA and EIA 189



Supposing that a 99% confidence level (notice this is under realistic
measure) is applied, the EC under current framework is as follows:

ECGMAB ¼ NVn;99% �NV0 ¼ Hn;99% � f n;99% �NV0

¼
e�mN

S0
	 VputðSn;99%; e

ðmþrgÞNS0; r; d; s;N � nÞ � f n;99% �NV0

¼ ergNFð�d2Þ � e�mN�dðN�nÞeðm�d�
s2
2
Þn�2:33s

ffiffi
n

p

Fð�d1Þ

� f nðS0e
ðm�d�

s2
2
Þn�2:33s

ffiffi
n

p

Þ �NV0

where

d1 ¼
ðm� d � s2

2
Þn� 2:33s

ffiffiffi
n

p
� ðmþ rgÞN þ ðr� d þ s2

2
ÞðN � nÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p

NV0 ¼ H0 � f 0

2.1.3. GMAB with Mortality and Lapse
In the previous section, mortality and lapse risk were totally ignored. In the
real world, it is the involvement of mortality and lapse that distinguish
GMAB from the normal financial instruments. Mortality leads to stochastic
contract maturity time, and the lapse feature gives the policyholder an
opportunity to abandon the contract. (Lapse happens when policyholders
terminate payments without having paid the full value of contract, usually
at the cost of penalty.)

Let CðtÞ be the percentage of policyholders that survive and do not lapse
before time t, q(t) and lðSt; tÞ be the simultaneous mortality and lapse
intensities (or hazard rates), respectively. Independence between lapse risk
and mortality risk is also assumed. Under a continuous time model, CðtÞ has
the following form:

CðtÞ ¼ e
�
R t

0
½lðSu;uÞþqðuÞ�du

Standard actuarial practice treats mortality risk as diversifiable or non-
systematic, which means the mortality risk can be eliminated by issuing a
large enough number of equivalent contracts.5 In this chapter, we adhere
to this assumption. Then, the benefits of a life insurance contract turn to beR
CðtÞqðtÞPðtÞ dt, where P(t) represents the payoff at time t.
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However, because equity market performance has huge impact on the
policyholder’s lapse behavior (Shumrak, Greenbaum, Darley, & Axtell,
1999; Milevsky & Salisbury, 2002), lapse risk is not fully diversifiable and
therefore cannot be hedged by simply issuing a large number of contracts.
Lapse rate l has form of lðSt; tÞ, and survival probability CðtÞ depends on the
whole underlying equity price path fStg prior to n.

A number of researchers model the lapse behavior as a policyholder’s
rational decision and treat VA as an American-typed option with best
stopping time always approachable. In this chapter, we suggest that the lapse
behavior of both VA and EIA policyholders can be irrational and suboptimal
just like other life insurance products and build the model in a different way.6

We introduce the dynamic lapse multiplier to model dynamic lapse. At any
time n, the instantaneous lapse rate can be modeled as follows:

lðSn; tÞ ¼ f ðR; tÞ 	 lB

where

R ¼
Fn

Gn
¼

1

S0
Sne

�ðmþrgÞn

The actual lapse rate l is the product of the base lapse rate lB
7 and the

dynamic lapse multiplier f ðR; tÞ. f ðR; tÞ depends on the ratio of guaranteed
value to market value (GV/MV). The dynamic lapse multiplier is a non-
decreasing function in variable Sn, which means a GMAB policyholder is
more likely to lapse when the embedded option is more out-of-the-money
(i.e., when the ratio of account value and guarantee is high).

Taking survival probability into account, the risk-neutral price of the
embedded option is as follows:

Hn ¼ EQ
n

Z N

n

e�rðt�nÞCðtÞqðtÞðGt � FtÞ
þdtþ e�rðN�nÞCðNÞ 	 ðGN � FNÞ

þ

� �
(1)

and the PV of the fees

f n ¼ EQ
n

Z N

n

CðtÞ 	 e�rðt�nÞFtmdt

� �

Let NVnðSnÞ be the net value of adding the guarantee to the VA product,
which is

NVnðSnÞ ¼ Hn � f n

Pricing and Risk Management of VA and EIA 191



Taking into account the mortality and lapse risk, EC of GMAB is defined in
the same way as previously defined,

P½ðNVnðSnÞ �NV0ðS0ÞÞ 
 ECGMAB�o1� b

Because of the path dependency of NVnðSnÞ, an analytic form of ECGMAB

is difficult to achieve. In later sections of this chapter, a Monte Carlo
simulation/finite difference hybrid algorithm is implemented to calculate
ECGMAB.

Fig. 2 illustrates the impact of mortality and lapse risk on the VA
embedded option value Hn and fee amount fn as function of underlying
equity price S, shown as red and blue lines respectively. The solid lines are
the case when no mortality and lapse risk is taken into account; the dashed
lines in the left plot represent a 5% constant mortality rate model, and
the dashed lines in the right plot denote a 5% base lapse rate model. As
observed, mortality risk reduces fee amount fn (as less people pay premium
payments) and has opposite effect on Hn upon underlying equity price.
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Mortality triggers early exercise; thus, when equity price is low, mortality
causes in-the-money put option exercise and the contract becomes less
profitable to the insurer; when equity price is high, early exercise is
suboptimal to policyholders as the put option time value is lost entirely,
turns the contract to be more in insurer’s favor. In contrast, lapse behavior
always reduces fee amount fn and Hn, as less people keep paying premium
and more people surrender their embedded options.

In a simpler case, if lapse risks are assumed to be independent from the
market (implying l(t) does not depend on Sn), a more simplified form of
the GMAB would be accessible. Let BSPðn; tÞ be, at any time n, the value
of the put option embedded in GMAB that matures at t, without taking
lapse and mortality into account. From the previous section we know that

BSPðn; tÞ ¼
e�mt

S0
	 VputðSn; e

ðmþrgÞtS0; r; d; s; t� nÞ

¼ ergt�rðt�nÞFð�d2Þ �
e�mt

S0
Sne

�dðt�nÞFð�d1Þ

where

d1 ¼
logðSn=S0Þ � ðmþ rgÞtþ ðr� d þ s2

2
Þðt� nÞ

s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

Unlike Eq. (1), CðtÞ is no longer path-dependent and therefore can be
factored out from the risk-neutral expectation. The embedded put option
value in GMAB can be written as follows:

Hn ¼

Z N

n

CðtÞqðtÞBSPðn; tÞdtþCðNÞ 	 BSPðn;NÞ

The PV of the fees is

f n ¼

Z N

n

e
�
R t

0
½lðuÞþqðuÞ�du

	 e�rðt�nÞEQ½Ft�mdt

¼
mSn

S0

Z N

n

e
�
R t

0
½lðuÞþqðuÞ�du

	 e�mðt�nÞdt

Proposition 1. In the case where both mortality and lapse risk are
independent from the underlying equity prices, function NVnðSnÞ is
monotonically decreasing.
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Proof. See the appendix. �

As NVnðSnÞ is monotonic, its analytical EC (or equivalent, VaR) can be
directly calculated in the same way as in the previous section (Fong & Lin,
1999):

ECGMAB ¼ NVn;99% �NV0 ¼ Hn;99% � f n;99% �NV0

where

Hn;99% ¼

Z N

n

CðtÞqðtÞBSP99%ðn; tÞdtþCðNÞBSP99%ðn;NÞ

f n;99% ¼ eðm�d�
s2
2
Þn�2:33s

ffiffi
n

p

m

Z N

n

e
�
R t

0
½lðuÞþqðuÞ�du

	 e�mðt�nÞdt

BSP99%ðn; tÞ ¼
e�mt

S0
	 VputðS0e

ðm�d�
s2
2
Þn�2:33s

ffiffi
n

p

; eðmþrgÞtS0; r; d; s; t� nÞ

¼ ergt�rðt�nÞFð�d2Þ � e�mteðm�d�
s2
2
Þn�2:33s

ffiffi
n

p

e�dðt�nÞFð�d1Þ

d1 ¼
ðm� d � s2

2
Þn� 2:33s

ffiffiffi
n

p
� ðmþ rgÞtþ ðr� d þ s2

2
Þðt� nÞ

s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

NV0 ¼ H0 � f 0

2.2. Valuation and Economic Capital of PTP

2.2.1. Product Description
Unlike VA, EIA are general account8 assets. EIA contracts vary between
insurance companies and the simplest EIA product is called PTP. This
provides the beneficiary return on an index, but with a minimal guarantee
(which is call-like) at the contract’s maturity (usually death protection is
included).

An example of a PTP contract is as follows: at the initiation, t ¼ 0, the
policyholder enters into a contract by paying the insurance company
an initial amount P. The insurance company invests the amount P into
the bond market, and there is no further payment from the policyholder.
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The insurance company guarantees a fixed rate of return rg (with a pre-
specified guaranteed proportion) up to the end of the contract (guaranteed
payment can be caused by mortality, maturity, or lapse decided by the
policyholder), when the beneficiary will receive the greater of either the
return on an index (with a pre-specified participation rate) or the guaranteed
amount. If the policyholder lapses the EIA contract before maturity, he/she
can get the guaranteed amount back after some penalty fees are charged, but
the return on that index is not redeemable.

2.2.2. PTP without Mortality and Lapse
Consider a simple PTP contract with $1 initial account value and maturity
time N (in years) with fixed-interest rate rg and guaranteed proportion Z
(95% or 100% is common). Also, assume the underlying equity index
price follows geometric Brownian motion with constant risk-free rate and
volatility. Let

Gn ¼ Z 	 ergn; 0 � n � N

be the amount of account value that is guaranteed. Similar to a
GMAB contract, Gn is going to be the strike price for its embedded option.
Let Sn represent the value at n of the equity index used. Given a
participation rate a, the beneficiary of embedded call option payoff at
maturity will be

HN ¼ FN � Gnð Þ
þ
¼ 1þ a

SN

S0
� 1


 �
 �
� Z 	 ergN


 �þ

¼
a
S0

SN �
S0

a
ðZergN � ð1� aÞÞ

� �þ

with

FN ¼ 1þ a
SN

S0
� 1


 �
 �

where FN is the available amount for participation. At any time noN, the
embedded call value on this contract can be formulated through risk-neutral
pricing theory.

Hn ¼ EQ
n ½e

�rðN�nÞHN �

Let notation VcallðS0;K ; r; d; s; tÞ represent the price of a standard
European call. Under the Black–Scholes–Merton framework (Black &
Scholes, 1973), the closed form of the embedded option value Hn can be

Pricing and Risk Management of VA and EIA 195



written as follows:

Hn ¼
a
S0

	 Vcall Sn;
S0

a
ðZergN � ð1� aÞÞ; r; d; s;N � n


 �

¼ e�dðN�nÞ aSn

S0
Fðd1Þ � ðZergN � ð1� aÞÞe�rðN�nÞFðd2Þ

where

d1 ¼

logðaSn=½S0ðZergN � ð1� aÞÞ�Þ þ r� d þ
s2

2


 �
ðN � nÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p

Similar to a GMAB contract, the net value of adding the guarantee to
the PTP product at time n, noted by NVnðSnÞ, can be formulated as the
difference between two parts: the first part is the embedded option
(guarantee) value, from time n to maturity N; the second part is the present
value of the fee that is going to be charged in the future (noted as fn).
NVnðSnÞ has the following form:

NVnðSnÞ ¼ Hn � f n

where

f n ¼

Z N

n

e�rðt�nÞðr� rgÞZdt ¼
r� rg

r
Z½1� e�rðN�nÞ�

The corresponding EC of the PTP is defined as the percentile risk measure
of NVðSnÞ:

P½NVnðSnÞ �NV0ðS0Þ 
 ECPTP�o1� b

where b is the confidence level. As NVnðSnÞ is again monotonic,9 its
analytical EC (or equivalent, VaR) is accessible (Fong & Lin, 1999).
Supposing that a 99% confidence level (notice this is under realistic
measure) is applied, the EC under the current framework is as follows:

ECPTP ¼ NVn;99% �NV0 ¼ Hn;99% � f n �NV0

¼ e�dðN�nÞaeðm�d�
s2
2
Þnþ2:33s

ffiffi
n

p

Fðd1Þ

� ðZergN � ð1� aÞÞe�rðN�nÞFðd2Þ � f n �NV0
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with

d1 ¼

m�d�
s2

2


 �
nþ2:33s

ffiffiffi
n

p
þ logða=½ðZergN �ð1�aÞÞ�Þþ r�dþ

s2

2


 �
ðN�nÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffi
N�n

p

d2 ¼ d1�s
ffiffiffiffiffiffiffiffiffiffiffiffi
N�n

p

NV0 ¼H0� f 0

2.2.3. PTP with Mortality and Lapse
The effect of taking mortality into consideration in a PTP contract is similar
to the GMAB case. By using the same terminology, let CðtÞ be the
percentage of policyholders that survive and do not lapse before t, qðtÞ and
lðSt; tÞ be the mortality and lapse intensities (or equivalently, hazard rates),
respectively. Independence between lapse risk and mortality risk is also
assumed. Then we see that

CðtÞ ¼ e
�
R t

0
½lðSu;uÞþqðuÞ�du

Similar to GMAB, lapse risk is not fully diversifiable and CðtÞ depends on
the whole underlying equity price path fSng prior to t. At any time n, the
instantaneous lapse rate can be modeled as follows:

lðSn; tÞ ¼ f ðR; tÞ 	 lB

with

R ¼
Gn

Fn
¼

S0

Sn
Z 	 ergn

The actual lapse rate l is the product of the base lapse rate lB and
the dynamic lapse multiplier f ðR; tÞ. f ðR; tÞ depends on the ratio of market
value to guaranteed value (MV/GV, which is different from GMAB).
The dynamic lapse multiplier is again a non-decreasing function in variable
Sn, which means a PTP policyholder tends to lapse more likely when the
embedded option is more out-of-the-money (i.e., when the ratio of account
value and guarantee is high).

Taking survival probability into account, the risk-neutral price of the
embedded option at time n is as follows:

Hn ¼ EQ
n

Z N

n

e�rðt�nÞCðtÞqðtÞðFt � GtÞ
þdtþ e�rðN�nÞCðNÞ 	 ðFN � GNÞ

þ

� �
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And the PV of the fees is

f n ¼

Z N

n

CðtÞ 	 e�rðt�nÞðr� rgÞZdt

¼ ðr� rgÞZ
Z N

n

CðtÞ 	 e�rðt�nÞdt

Let NVnðSnÞ be the net value of adding the guarantee to the PTP product,
which is

NVnðSnÞ ¼ Hn � f n

Taking into account the mortality and lapse risk, the EC of PTP is defined
as follows:

P½NVnðSnÞ �NV0ðS0Þ 
 ECPTP�o1� b

An analytical form of ECPTP is difficult to achieve. In this chapter, a
Monte Carlo simulation/finite difference hybrid algorithm is implemented
to calculate ECPTP.

Fig. 3 illustrates the impact of mortality and lapse risk on the EIA
embedded option value Hn and fee amount fn as function of underlying
equity price S, shown as red and blue lines respectively. The solid lines
are the case when no mortality and lapse risk is taken into account; the
dashed lines in the left plot represent a 5% constant mortality rate
model, and the dashed lines in the right plot denote a 5% base lapse rate
model. Similar to Fig. 2, mortality risk reduces fee amount fn (as less
people pay premium payments) and has opposite effect on Hn upon
underlying equity price. Mortality triggers early exercise; thus, when
equity price is low, the out-the-money call option is exercised unprofitably
and the contract becomes more profitable to the insurer; when equity price is
high, call option is in-the-money and early exercise is in policyholder’s favor.
In contrast, lapse behavior always reduces fee amount fn and Hn, as less
people keep paying premium and more people surrender their embedded
options.

In a simpler case, if lapse risks are assumed to be independent from the
market (which means l(t) does not depend on Sn), a clearer form of the PTP
would be accessible. Let BSCðn; tÞ be, at any time n, the value of the call
option embedded in PTP that matures at t, without taking lapse and
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mortality into account. From the previous section, we know that

BSCðn; tÞ ¼
a
S0

	 Vcall Sn;
S0

a
ðZergt � ð1� aÞÞ; r; d; s; t� n


 �

¼ e�dðt�nÞ aSn

S0
Fðd1Þ � ðZergt � ð1� aÞÞe�rðt�nÞFðd2Þ

with

d1 ¼

logðaSn=½S0ðZergt � ð1� aÞÞ�Þ þ r� d þ
s2

2


 �
ðt� nÞ

s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

Here CðtÞ is no longer path-dependent and therefore can be factored out
from the risk-neutral expectation. The embedded call option value in PTP
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Fig. 3. Impact of Mortality and Lapse Risk on EIA.
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can be written as follows:

Hn ¼

Z N

n

CðtÞqðtÞBSCðn; tÞdtþCðNÞ 	 BSCðn;NÞ

The PV of the fees is

f n ¼ ðr� rgÞZ
Z N

n

CðtÞ 	 e�rðt�nÞdt

where NVnðSnÞ is again monotonic through similar steps to those in the
proof of Proposition 1. The EC of PTP can be calculated through the same
way as in the last section (Fong & Lin, 1999):

ECPTP ¼ NVn;99% �NV0 ¼ Hn;99% � f n �NV0

with

Hn ¼

Z N

n

CðtÞqðtÞBSC99%ðn; tÞdtþCðNÞ 	 BSC99%ðn;NÞ

BSC99%ðn; tÞ ¼
a
S0

	VcallðS0e
ðm�d�

s2
2
Þnþ2:33s

ffiffi
n

p

;
S0

a
ðZergt � ð1� aÞÞ; r; d;s; t� nÞ

¼ e�dðt�nÞaeðm�d�
s2
2
Þnþ2:33s

ffiffi
n

p

Fðd1Þ � ðZergt � ð1� aÞÞe�rðt�nÞFðd2Þ

d1 ¼

m� d �
s2

2


 �
nþ 2:33s

ffiffiffi
n

p
þ logða=½Zergt � ð1� aÞ�Þ þ r� d þ

s2

2


 �
ðt� nÞ

s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

d2 ¼ d1 � s
ffiffiffiffiffiffiffiffiffiffi
t� n

p

NV0 ¼H0 � f 0

2.3. Pricing VA/EIA: A Finite Difference Approach

2.3.1. Methodology
Oppose to the Monte Carlo simulation, finite difference is a fast and highly
efficient method to compute the irregular and path-dependent VA/EIA
option value.10

The first step we take is to remove path dependency. Let Hn ¼

HnðCðtÞ;S; tÞ be the option value of VA or EIA and CðtÞ be the survival
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probability at time t. Intuitively, we have

HnðCðtÞ;S; tÞ ¼ CðtÞ 	Hnð1;S; tÞ

This implies that option value Hn is proportional to survival probability
C(t). For example, the price of an option with half policyholders left should
be exactly half of the price when 100% of policyholders stay in the contract,
given other conditions unchanged. Therefore, we let notation HnðS; tÞ stand
for Hnð1;S; tÞ for simplicity. Similarly, we have

f nðCðtÞ;S; tÞ ¼ CðtÞ 	 f nð1;S; tÞ

In addition, we use f nðS; tÞ for f nð1;S; tÞ. We call HnðS; tÞ and f nðS; tÞ as
all-survival prices. Both HnðS; tÞ and f nðS; tÞ are Markovians and can be
solved through a partial differential equation (PDE) approach.

In addition, we introduce the discrete mortality and lapse model
(DMLM): Assuming mortality, lapse behavior and fee charging only
happen discretely at nodes t0; t1; . . . ; tN , as shown in the following graph:

ti ti+1

Black-Scholes PDE holds in any period (ti, ti+1)

Mortality and lapse event only happens 
discretely at nodes t0, t1,..., tn 

t

The Black–Scholes PDE holds for both HnðS; tÞ and f nðS; tÞ in between
every open interval ðti; tiþ1Þ, because no mortality, lapse, or fee charge event
happens between nodes:

@V

@t
�

1

2
s2S2 @

2V

@S2
� rS

@V

@S
þ rV ¼ 0 on ðti; tiþ1Þ
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In this PDE, t stands for time to maturity. Let x ¼ lnðSÞ to get constant
coefficients.

@V

@t
�

1

2
s2

@2V

@x2
� r� d�

1

2
s2


 �
@V

@x
þ rV ¼ 0 on ðti; tiþ1Þ (2)

Under the DMLM framework, the finite difference method will be applicable.

2.3.2. Crank–Nicholson Scheme
For any time node ti, we split it into two nodes t�i and tþi , which are infinitely
close.11

Black-Scholes PDE holds in any period (ti ,ti+1)

Mortality and lapse event only happens 
discretely at nodes t0, t1,...,tN

t

−
i−1t +

i−1t

−

it
−

it
+

+

i+1t−
i+1t+

S

We use the Crank–Nicholson scheme here for its second-order
accuracy and non-conditional convergence. Let Vn

k ¼ Vn
kðSk; tþn Þ and

Vnþ1
k ¼ Vnþ1

k ðSk; t�nþ1Þ; the discretization form of Eq. (2) is

Vnþ1
k �Vn

k

Dt
¼

1

2

1

2
s2

Vn
kþ1�2Vn

kþVn
k�1

Dx2
þ r�d�

1

2
s2


 �
Vn

kþ1�Vn
k�1

2Dx
� rVn

k

� �

þ
1

2

1

2
s2

Vnþ1
kþ1�2Vnþ1

k þVnþ1
k�1

Dx2
þ r�d�

1

2
s2


 �
Vnþ1

kþ1�Vnþ1
k�1

2Dx
� rVnþ1

k

" #

This can be simplified in matrix form:

I�
1

2
DtA


 �
	Vnþ1 ¼ Iþ

1

2
DtA


 �
	Vn

where I is identity matrix and A is triangular with constant coefficients.
Eq. (2) has accuracy of OðDx2þDt2Þ and can be solved quickly by Thomas’
algorithm with FLOP counts OðNÞ.

Special attention pays to all time nodes t�n where mortality, lapse, and fee
charge occur. According to DMLM, at t�n , there is qDt percentage of
policyholders die (implying that portion of the total option is exercised) and
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lDt percentage of policyholders lapse (meaning that portion of option is
abandoned). This can be incorporated into schemes as follows:

VA : HnðS; t
þÞ ¼ qDtmaxðK � S; 0Þ þ ð1� qDt� lDtÞHnðS; t

�Þ

EIA : HnðS; t
þÞ ¼ qDtmaxðS � K ; 0Þ þ ð1� qDt� lDtÞHnðS; t

�Þ

Both q and l depend on (S, t) and are computed at each grid ðSk; tnÞ.
For fee charge fn, it satisfies PDE (Eq. (2)) inside each interval ðtþi ; t

�
iþ1Þ.

At time node t�n , according to DMLM, qDtþ lDt units of policyholders exit
their contract; meanwhile, there are mSDt (for VA) or ðr� rgÞZDt (for EIA)
amount of extra fee charged. This can be modeled as follows:

VA : f nðS; t
þÞ ¼ ð1� qDt� lDtÞ 	 ðf nðS; t

�Þ þ SmDtÞ

EIA : f nðS; t
þÞ ¼ ð1� qDt� lDtÞ 	 ðf nðS; t

�Þ þ ðr� rgÞZDtÞ

The initial condition of VA and EIA option value HnðS; tÞ is contract’s
payoff function at maturity t ¼ 0. The fee charge fn has zero initial value for
both VA and EIA:

VA : HnðS; 0Þ ¼ maxðK � S; 0Þ

EIA : HnðS; 0Þ ¼ maxðS � K ; 0Þ

f nðS; 0Þ ¼ 0

2.4. Economic Capital and Conditional VaR for VA and EIA Mixture

As introduced at the beginning of this chapter, natural diversification
effects exist for a portfolio that includes both VA (which is put-like) and
EIA (which is call-like) products. Suppose both products share the same
underlying equity process. Then, such a portfolio can be modeled as a
straddle (or strangle), that is, whenever either product is in-the-money, the
other one is likely to be out-of-the-money. More specifically, when stock
price is low and VA is in-the-money, the option value embedded in EIA
drops and draws the portfolio value to remain regular; when the stock price
is high and EIA is in-the-money, not only is the option value embedded in
VA drop, but also the policyholder’s account was charged by the insurance
company with higher management fees; both lower the total loss of the
whole portfolio. Therefore, the risk to the insurer that provides these
products is reduced. In this chapter, we pick both VaR and Conditional
VaR12 (CVaR) as risk measures.
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The following figures illustrate the diversification effect between VA and
EIA. The first figure is the price distribution histogram of VA, EIA, and a
mixture that contains 50% VA and 50% EIA. Compared to VA or EIA, the
mixture has a very concentrated distribution range around zero. The second
figure is the price of VA, EIA, and mixture as a function of underlying stock
price. Compared to VA or EIA, the mixture curve is flatter and less sensitive
to stock moves. These all imply a smaller VaR.
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In the next section, we will introduce the Monte Carlo simulation/finite
difference hybrid framework to calculate EC.

2.4.1. Economic Capital and Conditional VaR Calculation
In this chapter, a Monte Carlo simulation/finite difference hybrid frame-
work is used to valuate EC of both products and the diversification benefits.
The simulation algorithm consists of the following steps:

1. Divide time t and space x ¼ lnðSÞ up into M by N discrete intervals:

0 ¼ t1ot2o . . .otM ¼ T

XMin ¼ x1ox2o . . .oxN ¼ XMax

Let fSk ¼ expðxkÞjk ¼ 1; . . . ;Mg be the stock space nodes.
2. Set up the finite difference grid. Given any time horizon n, we solve PDE

backwards till time t ¼ n. We can get option and fee all-survival prices at
all space nodes at t ¼ n: fHk

njk ¼ 1; . . . ;Ng and ff knjk ¼ 1; . . . ;Ng.
3. Simulate the equity price paths from time 0 to time t ¼ n. Let NSM be

the total number of simulations runs. The equity price at t ¼ n is
fSn;iji ¼ 1; . . . ;NSMg. We also simulate survival probability CðtÞ along
these equity paths till t ¼ n (taking mortality qðtÞ and lapse rate lðS; tÞ
into account): fCn;iji ¼ 1; . . . ;NSMg. This is called the outer simulation
paths.

4. At time t ¼ n for each simulation path i, we have equity price Sn;i.
Supposing Sn;i is located between two adjoining stock space nodes,
S

~koSn;ioS
~kþ1oS

~kþ2, we interpolate a quadratic polynomial13 between
fHk

n; f
k
njk ¼ ~k; ~kþ 1; ~kþ 2g to compute all-survival option value ~Hn;i and

fee ~f n;i, respectively.
5. The actual option, fee, and VA/EIA net value are calculated as follows:

Hn;i ¼ Cn;i 	 ~Hn;i

f n;i ¼ Cn;i 	
~f n;i

NVn;i ¼ Hn;i � f n;i

6. Repeat steps 4 and 5 until we get VA and EIA net value NVn;i for all
simulation paths i ¼ 1; . . . ;NSM as shown in the figure below. We can
compute EC and Conditional VaR at 99% level of NVn;i.

Pricing and Risk Management of VA and EIA 205



For a portfolio P that includes both VA and EIA products, let w be the
weight of VA. We can optimize w to minimize the portfolio’s EC14 at any
time horizon t ¼ n:

min
0owo1

ðVaR½wNVVA
n þ ð1� wÞNVEIA

n �Þ

w can be optimized through usual iteration algorithms such as Newton’s
method or gradient descent. The following graph is an example of the
portfolio EC as the function of w:
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Table 2 provides the EC requirements and conditional VaR for VA, EIA,
and the optimal VA/EIA mixture based on different time horizons.15 The
optimal weight column is the percentage weight of VA in the optimal
portfolio. Graphical results are listed in Fig. 4.

In this example, the natural hedging effect is significant. In the first
5 years, the optimal mixtures have an average of 43% smaller EC require-
ments than VA, and these are 78% smaller compared to EIA. These optimal
mixtures also have Conditional VaR that are superior to any single product.

Table 2. Economic Capital Requirements and CVaR
for VA, EIA, and Mixture.

Tenor

(Years)

Economic Capital

(VaR 99%)

Optimal

Weight

(VA, %)

Conditional VaR

VA EIA Optimal portfolio VA EIA Optimal portfolio

1 0.19 0.29 0.07 50 0.22 0.35 0.08

2 0.26 0.57 0.13 57 0.31 0.70 0.16

3 0.32 0.89 0.19 64 0.37 1.11 0.23

4 0.37 1.26 0.25 70 0.43 1.57 0.30

5 0.42 1.70 0.31 75 0.48 2.13 0.36

Note: The bold/italic numbers are used to show the effect of risk reduction (in terms of Eco

Capital and Cond. VaR) from an optimized VA/EIA portfolio.
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Fig. 4. Economic Capital Requirement for VA, EIA, and the Optimal Mixture.
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It is also observed in Table 2 that the EC of EIA goes up tremendously.
This is because for shortening a call, there is not an upper bound for the
future loss. While in the mixture portfolio, the loss from EIA is balanced
out by the moneyness of the option embedded in VA and the fees charged
from policyholder’s account, as shown in the optimal portfolio column.
In Table 2, the weights of VA in the optimal mixture portfolio grow
gradually. This is because the capital demand from EIA increases quickly
and thus requires more weight in the VA to offset.

2.5. Conclusion

This chapter contributes to the literature in the area of equity-linked
insurance contract pricing and analyzing natural diversification benefits
between VA and EIA products. These benefits result from the reason that
the values of VA and EIA move in opposite directions in response to a
change in the underlying equity value. The author modeled VA and EIA in
the risk-neutral option pricing framework and implemented finite difference
pricing scheme. Numerical examples show that natural hedging is feasible
and the benefits are significant, which enables insurance companies’ capital
to be deployed more efficiently.

NOTES

1. Source: National Association for Variable Annuities (NAVA).
2. The term ‘‘lapse’’ means a policyholder unwinds his insurance contract,

liquidates his account, and exits. Usually a certain penalty fee is necessary for the
cost of breaking an existing contract.
3. Economic capital (EC) in this chapter is defined as the difference between

99% Value at Risk (VaR) of product’s net value and initial value: ECðtÞ ¼
VaR99%ðVðtÞÞ � Vð0Þ.

4. Monotonicity of function NVnðSnÞ is implied by the negativeness of its first
derivative with respect to Sn.
5. For incomplete mortality market analysis, please refer to Follmer and

Sonderman (1986).
6. This is because life insurance policyholders are neither financial professionals

nor institutional investors, and lapse does happen for reasons unrelated to the equity
performance. Liquidity problems and defaults can be examples.
7. Base lapse rate can be influenced by macro-economic factors such as domestic

economy and federal rates.
8. Differs from VA, the owners of general accounts could lose part or all of their

investments if the insurer defaults.
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9. Monotonicity of function NVnðSnÞ is implied by the positiveness of Hn’s first
derivative with respect to Sn. Here fn is not a function of Sn and therefore has no
contribution to dðNVnðSnÞÞ=dSn.
10. Monte Carlo simulation results can be greatly improved if we take the

no-mortality/lapse option value as a control variate. However, such approach would
still be a lot slower than using the finite difference algorithm described in this
chapter.
11. The split technique here is for implementation purpose only.
12. Conditional VaR is defined as the conditional expectation of random variable

that exceeds its VaR: CVaRaðXÞ ¼ EðXjX4VaRaðXÞÞ. CVaR is coherent and
therefore is usually considered as a better alternative risk measure to VaR. CVaR is
also called Expected Shortfall or Expected Tail Loss in Finance. Please refer to Pflug
(2000) for more detail.
13. We use quadratic interpolation here to be consistent with the second-order

accuracy of Crank–Nicholson scheme.
14. Alternatively we can run optimization targeting CVaR of the portfolio, which

is not covered in the scope of this chapter.
15. Valuation parameters are as follows:
VA: Maturity N ¼ 10 years, guaranteed interest rate rg ¼ 2%, premium

charge 2%.
EIA: Maturity N ¼ 10 years, guaranteed interest rate rg ¼ 2%, guaranteed

amount Z ¼ 100%, participation rate a ¼ 70%
Mortality rate: 1%, base lapse rate: 2%. Equity drift m ¼ 12%, volatility s ¼ 0.2,

dividend yield d ¼ 2%.
16. Here, the authors intentionally skipped rigorous mathematical proof

of the interchange of derivative and integral. Precisely, this formula is valid
only when the following technical conditions hold: (1) Both CðtÞqðtÞBSPðn; tÞ
and dðCðtÞqðtÞBSPðn; tÞÞ=dSn are continuous; (2) Both CðtÞqðtÞBSPðn; tÞ and
dðCðtÞqðtÞBSPðn; tÞÞ=dSn are bounded by a L1 function. See Cheney (2001) for
example.
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APPENDIX

Notations

Gn 9 guaranteed level
rg 9 guaranteed interest rate
N 9 maturity of product
Fn 9 account value at time n
Hn 9 value of embedded option
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S0 9 underlying equity price at time 0
m 9 management fee of VA charged each year
Z 9 guaranteed amount of EIA
a 9 participation rate
VputðS0;K ; r; d ; s; tÞ 9 price of a vanilla European put
CðtÞ 9 survival probability
lðSt; tÞ 9 instantaneous lapse rate
q(t) 9 instantaneous mortality rate
NVn 9 net value of guarantee
fn 9 value of benefit charge
b 9 confidence level
EC 9 economic capital
CVaR 9 Conditional Value at Risk
BSCðn; tÞ 9 European call price at time n and maturities at t
BSPðn; tÞ 9 European put price at time n and maturities at t

Proof of Proposition 1

Proposition 1. In the case where both mortality and lapse risk are
independent from the underlying equity price, the function NVnðSnÞ is
monotonically decreasing.

Proof. If both risks are independent from the underlying equity price Sn,
NVnðSnÞ has the following form:

NVnðSnÞ ¼ Hn � f n

with

Hn ¼

Z N

n

CðtÞqðtÞBSPðn; tÞdtþCðNÞ 	 BSPðn;NÞ

The PV of the fees is

f n ¼
�Sn

S0

Z N

n

e
�
R t

0
½lðuÞþqðuÞ�du

	 e�mðt�nÞdt

Now, take the first derivative of both Hn and fn with respect to Sn:
16

dHn

dSn
¼

Z N

n

CðtÞqðtÞ
dðBSPðn; tÞÞ

dSn
dtþCðNÞ 	

dðBSPðn;NÞÞ

dSn
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As

dðBSPðn; tÞÞ

dSn
¼ �

e�mt

S0
e�dðt�nÞFð�d1Þo0

we know that Hn is monotonically decreasing. For fn,

df n
dSn

¼
�

S0

Z N

n

e
�
R t

0
½lðuÞþqðuÞ�du

	 e�mðt�nÞdt 
 0

which implies that fn is monotonically increasing. Therefore, NVnðSnÞ is
monotonically decreasing. �
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